
Re-act: Compositing Yourself into Your Favorite Movies

Jay Shenoy
University of California, Berkeley

jayshenoy@berkeley.edu

Abstract

Digital compositing is a laborious process. Replacing
one actor with another often involves re-shooting the per-
formance under similar lighting conditions and manually
performing color correction in post-production. In this
project, I built a system to automatically relight and color-
correct a person’s face to match the lighting conditions in
a target image, implementing a geometry-aware relighting
scheme proposed by Shu et al. [9]. The algorithm can re-
light a photo to match another photo, painting, or even a
video sequence with realistic results.

1. Introduction and Related Work
The task of replacing an actor in a video sequence with

another recorded actor can be boiled down to histogram
matching, a classic technique in image processing. The is-
sue with simply matching histograms is that doing so fails
to capture details in the facial lighting, which are dependent
on the orientation of the face and the position of the light
sources.

In addition to hue correction, it’s necessary to properly
relight the actor’s face so that the composited image looks
more realistic. There has been much research in the com-
puter vision community in portrait relighting. A lot of work
has been done in creating methods to relight human faces
using high-definition environment maps and even simple
light sources. Most of these methods have been data-driven,
involving large datasets of human faces captured in complex
light stage setups, as found in [10] and [11].

These methods are meant to be highly general, allowing
one to relight portraits under any environment map. How-
ever, the problem of matching the lighting in an input por-
trait to that of a target portrait does not require such gener-
ality: it only requires that the two portraits have illumina-
tion conditions that appear similar. Thus, the method pro-
posed by Shu et al. in [9], which solves the portrait relight-
ing problem through an extension of the classic histogram
matching technique, will suffice for the purpose of digital
actor insertion.

(a) Input Image

(b) Target Image

(c) Relit Composite

Figure 1: Sample output of relighting algorithm

1

2. Overview of Technique

Shu et al. formulate portrait relighting as a mass trans-
port problem that first represents each image as an eight-
dimensional histogram: each pixel has a three-dimensional
color, a three-dimensional normal vector, and a two-
dimensional xy coordinate. In traditional histogram match-
ing, each channel of the image is represented as a one-
dimensional histogram, which is transferred to a target his-
togram by matching up the appropriate percentiles. Intu-
itively, if each one-dimensional histogram is visualized as a
pile of sand, the act of histogram matching is analogous to
finding the minimum amount of energy needed to move one
pile of sand to match up with another.

The concept of moving piles of sand can be general-
ized to higher dimensions, and is formally referred to as
the Wasserstein distance in probability theory. Concretely,
to transfer the pixels of one image to match a target his-
togram, we wish to solve the following optimization prob-
lem that incorporates information about the positions and
normal vectors:

argminf̂
∑

i

∑
j(||cij− f̂c(cij)||2+ ||pij− f̂p(pij)||2+

||nij − f̂n(nij)||2)P (cij , pij , nij)
Here, cij represents the color of pixel (i, j), pij repre-

sents its position, and nij represents its normal vector. f̂c
represents the transfer function for color, f̂p represents the
transfer function for position, and f̂n represents the transfer
function for the normal vectors. Essentially, we are trying
to minimize the distance that each eight-dimensional vec-
tor of each pixel is transported, subject to the constraint that
the three f̂ functions map the input image’s histogram to the
target image’s histogram nearly perfectly.

Unlike in one-dimensional space, the eight-dimensional
mass transport problem is computationally quite difficult to
solve exactly. In the next section, I will discuss an approx-
imation to computing the Wasserstein distance that the au-
thors of [9] employ to perform portrait relighting.

3. Implementation

The relighting pipeline consists of several stages. 3D
morphable models are first fit to the input and target im-
ages, producing per-pixel normals and positions that are ex-
trapolated using a Poisson system. Stochasting sampling is
used to compute multiple samples for each pixel and reduce
noise in the final image. Next, I compute the mass transport
between the eight-dimensional histograms with the Sliced
Wasserstein Distance algorithm. The samples for each pixel
are then averaged, and the entire algorithm is captured in
a multiresolution pipeline that exploits the fact that light-
ing details tend to be of low-frequency. The details of this
implementation are explained in the following subsections,
and an illustration of the process is provided in 2.

3.1. 3D Face Fitting

Similar to project 4, I used a deep neural network to fit a
3D morphable model of a human face to both the input and
target images. The deep network is built on top of the Mo-
bileNet architecture, and a pretrained implementation was
kindly provided by the authors of the 3DDFA V2 library
[4]. The normal vectors of the fitted model had to be ras-
terized into image space. Note that the authors of [9] used
a regression-based face-fitting technique, which is different
from the one I used. The benefit of 3DDFA V2 is that it
is faster and more accurate than the regression approach;
anecdotally, I noticed that the regression-based implemen-
tation provided in [1] took several minutes to fit each face
and was highly inaccurate in low-light settings, whereas
3DDFA V2 typically took less than 20 milliseconds to fit
each face and worked well even parts of the face were out
of frame.

3.2. Poisson Extrapolation

The normal vectors and position maps extracted from the
previous step only contain geometric information for the
image pixels corresponding to the facial region. To transfer
the entire image, we need normal vectors and position maps
for all the image pixels. While it is indeed possible to pre-
cisely estimate this information using other learning-based
approaches in computer vision, for the relighting task it is
sufficient to smoothly extrapolate the positions and normals
in the masked face region to the rest of the image.

To do so, I set up a 2D discrete Poisson system in which
the normals and positions in the facial region are fixed, and
the gradients in the non-facial region are set to zero. Essen-
tially, solving such a Poisson system smoothly extrapolates
the x, y, and z coordinates of the normals and positions us-
ing a gradient field that encourages the values to gradually
fade out. Since the Poisson matrix is inherently sparse, I
used an algebraic multigrid solver [8] to compute the ex-
trapolated maps.

3.3. Sliced Wasserstein Distance Algorithm

For each image pixel, I construct an eight-dimensional
sample vector consisting of the three-dimensional color,
three dimensional normal, and two-dimensional xy position
coordinates. The authors of [9] note that incorporating the
z position coordinate does not substantially alter the results.

As noted in the Overview section, computing the
Wasserstein distance exactly in eight-dimensional space
is computationally difficult. Therefore it is necessary to
approximate this mass transport calculation using what’s
known as the Sliced Wasserstein Distance algorithm, which
essentially computes random projections of the 8D samples
onto one-dimensional axes and then performs the naive 1D
histogram matching technique in an incremental fashion.

2

The algorithm operates as follows:

Algorithm 1: Mass Transport
Input: SI , ST , α, n
repeat n times

Compute random orthonormal matrix P ;
S̃I ← SI transformed by P ;
S̃T ← ST transformed by P ;
for i← 1 to 8 do

hi(x)← histogram matching function from
S̃I to S̃T along i-th axis;
S̃I ← αhi(S̃I) + (1− α)S̃I ;

end
SI ← S̃I transformed by PT ;

end

In the algorithm above, SI and ST correspond to the list
of 8D samples of the input and target images, respectively.
α is a hyperparameter akin to the learning rate of gradient
descent in machine learning that tunes the speed at which
mass transport is performed. n is another hyperparameter
controlling the number of iterations for which mass trans-
port is conducted. Empirically, setting α = 0.8 and n = 40
generates realistic outputs.

3.4. Color Noise

The mass transport algorithm fundamentally creates a
mapping between the histograms of the input and target im-
ages. Since this mapping transports one distinct sample per
pixel in the input image, a nasty side effect is that samples
that are close together in 8D space can be mapped to dis-
parate regions. Practically, this means that it is possible for
adjacent pixels in the input with similar color and normals
can be transformed to noticeably different colors due to the
inherent nature of discrete histogram matching. This pro-
duces the sorts of artifacts shown in 3.

To subvert this issue, I regularized the problem by con-
structing four additional 8D samples per pixel, where the
color of each sample is set to the color of the original sam-
ple plus a Gaussian random variable with variance 0.1. In-
tuitively, this spreads out the samples in 8D space, allowing
mass transport to map continuous regions. After transform-
ing the input image, the samples for each pixel are averaged
to produce the final output.

3.5. Multiresolution Approach

When the number of iterations is fixed, the time com-
plexity of mass transport is O(s log s), where s is the num-
ber of samples to be transformed. As the input and target
image sizes increase, mass transport slows down consid-
erably. Thus, in order to speed up the process for high-
resolution photographs, the authors of [9] suggest a two-
scale approach that performs mass transport on a downsam-
pled version of the input image, upscales the transformed

input, applies a non-uniform high-pass filter on the original
input, and finally adds these high-frequency details back to
the transformed input.

The key insight of this approach is that face illumina-
tion is largely low-frequency, so it is reasonable to com-
pute mass transport at a coarse scale and add back the high-
frequency information later. To retrieve the high-frequency
details, I implemented an edge-aware smoothing filter [5],
which preserves sharp edges while smoothing out low-
frequency regions, but runs much faster than the similar
bilateral filter. This filter produces a low-frequency out-
put, which I subtracted from the original image to retrieve
the high-frequency information. The difference between the
edge-aware smoothing filter and a simple Gaussian filter is
shown in 4.

3.6. Video Inpainting

To remove an actor from a video sequence, I masked
out their frame regions by hand and manually filled in the
masked regions using similar parts of the video. The back-
ground plates were then composited with the input actor’s
green screen performance using standard chroma key.

I also tried automating the inpainting process using flow-
edge guided video completion [3] to fill in the masked re-
gions with temporally-consistent backgrounds. However,
this technique did not work well for some scenes shot in
low-light environments, so I stuck with the manual ap-
proach.

4. Results

The portrait relighting technique produces facial illu-
mination that closely matches that of the target image.
These results vastly outperform naive histogram matching,
as shown in 5. Appendix A contains several examples of
the technique in action, including light transfer from pho-
tographs to paintings, and the project website contains even
more examples of the relighting algorithm, including com-
posited video sequences.

Some of the images contain slight artifacts in the back-
ground, but these are to be expected due to way in which
normals and position maps are extrapolated when solving
the Poisson system. Since the goal of this project is to com-
posite video sequences with realistic lighting, these back-
ground distortions do not matter as they are later masked
out.

The generated video sequences look realistic when com-
posited with the original movie scenes, but there is slight
flicker in the illumination from frame to frame because the
relighting step is computed for each frame separately. This
issue is manually fixed using the technique described in [7],
but one could potentially automate this process by employ-
ing temporal consistency methods as described in [2].

3

Figure 2: Pipeline diagram

5. Future Work

This project could be extended into a fully automatic dig-
ital compositing system that could use instance segmenta-
tion to select and replace actors without even using a green
screen. It would be interesting to incorporate full-body
mesh estimators as described in [6], which would provide
better geometric information about the actors. In addition,

the relighting technique implemented in this project only
works when the actor is in the foreground, so allowing oc-
clusion effects is another avenue worth exploring.

References
[1] Anil Bas, William A. P. Smith, Timo Bolkart, and Stefanie

Wuhrer. Fitting a 3d morphable model to edges: A compari-

4

(a) Without stochastic sampling

(b) With stochastic sampling

Figure 3: Effect of stochastic sampling on noise reduction

son between hard and soft correspondences. 2016. 2
[2] Nicolas Bonneel, James Tompkin, Kalyan Sunkavalli, De-

qing Sun Sylvain Paris, and Hanspeter Pfister. Blind video
temporal consistency. 2015. 3

[3] Chen Gao, Ayush Saraf, Jia-Bin Huang, and Johannes Kopf.
Flow-edge guided video completion. 2020. 3

[4] Jianzhu Guo, Xiangyu Zhu, Yang Yang, Fan Yang, Zhen Lei,
and Stan Z Li. Towards fast, accurate and stable 3d dense
face alignment. 2020. 2

[5] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image fil-
tering. 2013. 3

[6] Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and
Jitendra Malik. End-to-end recovery of human shape and
pose. 2018. 4

[7] Peter McKinnon. How to remove flicker from your videos!,
2018. 3

[8] L.N. Olson and J.B. Schroder. Pyamg: Algebraic multigrid
solvers in python v4.0, 2018. 2

(a) Input Image

(b) Gaussian smoothing

(c) Edge-aware smoothing

Figure 4: Difference between Gaussian and edge-aware
smoothing

5

(a) Input Image (b) Target Image

(c) Histogram Matching (d) Mass Transport Relighting

Figure 5: Histogram matching vs. mass transport

[9] Zhixin Shu, Sunil Hadap, Eli Shechtman, Kalyan Sunkavalli,
Sylvain Paris, and Dimitris Samaras. Portrait lighting trans-
fer using a mass transport approach. 2017. 1, 2, 3

[10] Tiancheng Sun, Jonathan T. Barron, Yun-Ta Tsai, Zexiang
Xu, Xueming Yu, Graham Fyffe, Christoph Rhemann, Jay
Busch, Paul Debevec, and Ravi Ramamoorthi. Single image
portrait relighting. 2019. 1

[11] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, and David W.
Jacobs. Deep single image portrait relighting. 2019. 1

6

A. Relit Outputs

(a) Input Image (b) Target Image (c) Relit

(a) Input Image (b) Target Image (c) Relit

7

(a) Input Image (b) Target Image (c) Relit

(a) Input Image (b) Target Image (c) Relit

8

